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1. Introduction

Atomic physics is still at the frontier of our exploration of fun-
damental physical laws [1]. In particular, the comparison of theory 
and experiment for parity non-conserving (PNC) interactions in 
heavy atoms represents a stringent low-energy test of the Standard 
Model complementing the high-energy experiments [1–6]. How-
ever, for the case of Cs atom, where PNC amplitude has been most 
accurately measured [7], there has been controversy regarding the-

✩ The review of this paper was arranged by Prof. N.S. Scott.
✩✩ This paper and its associated computer program are available via the Computer 
Physics Communications homepage on ScienceDirect (http://www.sciencedirect .
com /science /journal /00104655).

E-mail address: zamastil@karlov.mff.cuni.cz (J. Zamastil).
https://doi.org/10.1016/j.cpc.2022.108490
0010-4655/© 2022 Elsevier B.V. All rights reserved.
oretical evaluation of the effect [1,2]. The first step in clarifying the 
situation is to establish the independence of the result on the used 
basis set.

When dealing with atoms, one first takes advantage of their 
spherical symmetry and by means of the angular momentum al-
gebra integrates out the spinor-angular degrees of freedom. This 
is now a standard exercise. One is then left with the radial de-
gree of freedom only. This can be dealt with either numerically, 
see e.g. [8–10], by confining the atom to an artificial cavity and re-
placing the continuous radial variable by a set of discrete points, 
called the radial grid, or analytically by expanding the wave func-
tion into a basis set. The most popular choice for the latter is a 
B-spline basis, see e.g. [11–15], where one again confines the atom 
to an artificial cavity. The radial coordinate is divided into seg-
ments, and in each segment the radial part of the atomic function 
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is expanded into piecewise polynomials. Finally, there is a third 
possibility: to expand the radial part of the atomic function into a 
complete and entirely discrete set, the so-called Sturmian basis set, 
see e.g. [16,19,20]. Moreover, this basis is orthonormal [21], albeit 
with the weight r−1 with respect to the ordinary weight, and thus 
avoids the problem of basis set linear dependence.

As it should be clear, the numerical and B-spline approaches are 
very similar. They both start to lose their appeal when one deals 
with highly excited states since then the interval where one needs 
an accurate numerical description of the wave function becomes 
too large. Also, they both require to enclose the atom in an arti-
ficial cavity. Thus, when removing artificial restrictions, necessary 
for carrying out the numerical calculation, to obtain physical ob-
servables, one has to make sure of the independence of the result 
on number of parameters, such as the volume of the artificial cav-
ity, the number of finite intervals the cavity is decomposed into, 
number of the basis functions or density of grid used on each of 
the finite intervals, etc. This could be problematic for second-order 
quantities when summation over complete system of atomic states 
is required. On the other hand, the Sturmian functions form an or-
thonormal basis set on an infinite interval with only one artificial 
parameter, namely the number of the considered basis functions. 
Indeed, the most accurate non-relativistic calculations of positions 
and widths of highly doubly excited states in helium [22], single 
and double photoionization of helium [23], and so on, were done 
with the use of this basis set.

The problem with using Sturmian functions is numerically sta-
ble calculation of the matrix elements of the electrostatic interac-
tion between highly excited atomic configurations. This problem 
is common to expansion into any orthogonal basis set. The or-
thogonality requirement enforces functions to have a large number 
of nodes. Straightforward integration of these functions based on 
their explicit coordinate representation in double or even quadru-
ple precision arithmetics very quickly yields numerical results that 
are completely off the correct values. A solution to this problem 
was developed in [16] for the non-relativistic case. Its key idea is 
to consider Sturmian functions not “analytically”, i.e. through their 
explicit functional form, but “algebraically”, i.e. as functions satis-
fying certain recursion relations. These recursion relations then im-
ply recursion relations for the integrals of these functions. In this 
paper we extend this method to the relativistic case and further 
improve it. Calculation of the matrix elements of the electrostatic 
interaction is separated in the standard way, i.e. by means of the 
multipole expansion of the Coulomb potential, into spinor-angular 
and radial integrations. The radial integrals are evaluated as fol-
lows: first the product of two Sturmian functions is expressed as a 
linear combination of Sturmian functions, where the coefficients of 
the linear combination satisfy a certain difference equation in two 
variables. This reduces the radial integrals over four functions to 
integrals over two functions. Second, calculation of these reduced 
integrals is transformed into the solution of difference equations 
in one variable. Third, we find the asymptotic form of the one-
variable difference equations. This in turn yields numerically stable 
solution of these equations for very large quantum numbers.

The paper is organized as follows. In Section 2 we introduce 
the analytic restricted Dirac-Hartree-Fock (DHF) method for closed-
shell atoms. One-particle orbital functions are expanded into the 
product of spinor-angular and radial functions. The spinor-angular 
functions are constructed from the eigenstates of the total an-
gular momentum, parity and non-Hermitian, but PT -symmetric 
[17], operator introduced long time ago by Biedenharn [18]. The 
radial functions are expanded into the relativistic Sturmian basis 
set. In the following Sections 3 and 4 we describe calculation of 
the needed one-particle integrals and spinor-angular integration 
of two-particle integrals, respectively. These Sections are prepara-
tion for the main objective of this paper: in Section 5 we propose 
2

an algebraic method for the calculation of the radial part of the 
two-particle integrals. In Section 6 we briefly outline the calcu-
lation of PNC amplitude in Cs in the frozen core approximation. 
The practical implementation of the method in Fortran is described 
in Section 7. Section 8 gives the reader a brief idea about the 
PASC program and its structure. The performance of the method 
is discussed in Section 9; conclusions are drawn in Section 10. In 
Appendices we describe the evaluation of the specific types of the 
hypergeometric function and derive difference equation for special 
one-electron integrals. These technical issues are needed in main 
Section 5.

2. Restricted Dirac-Hartree-Fock method for closed-shell atoms

2.1. Restricted Dirac-Hartree-Fock model

In the restricted DHF model we put N electrons into N spin-
orbitals labeled by a. These spin-orbitals are successively put in 
accordance with the Bohr Aufbau principle into ν shells labeled by 
A. Each shell is characterized by the total (orbital plus spin) an-
gular momentum j A , relativistic parity κA and principal quantum 
number nA , the last number distinguishing different shells of the 
same spinor-angular symmetry. Each shell comprises 2 j A +1 states 
of different projections m of the total angular momentum on one 
of the coordinate axes.

The energy of N electrons in the Hartree-Fock approximation is

E =
N∑

a=1

〈a|Ẑ|a〉 + 1

2

N∑
a=1

N∑
b=1

〈a|1〈b|2V̂ (|a〉1|b〉2 − |b〉1|a〉2) (1)

where a and b stand for spin-orbitals and Ẑ and V̂ are one- and 
two-particle operators, respectively. Variation of the energy func-
tional (1) with respect to spin-orbitals a, subjected to normaliza-
tion constraint 〈a| a〉 = 1, and setting this variation to zero yields 
the Hartree-Fock equations

F̂|a〉 = Ea|a〉 , (2)

where the action of the Fock operator on the spin-orbitals is given 
by

F̂|a〉1 = Ẑ|a〉1 +
N∑

b=1

〈b|2V̂ (|a〉1|b〉2 − |b〉1|a〉2) (3)

and Ea are one-particle energies. They are related to the total en-
ergy by the relation

E = 1

2

N∑
a=1

[
Ea + 〈a|Ẑ|a〉

]
. (4)

The last three relations are completely general and hold regardless 
of the specific forms of the one- and two-particle operators Ẑ and 
V̂ and spin-orbitals a.

In the case of the relativistic Hartree-Fock method, also called 
Dirac-Hartree-Fock (DHF) method, the one- and two-particle oper-
ators read in natural units (h̄ = c = 1)

Ẑ = γ0γ · P̂ + γ0μ − Zα

R̂
(5)

and V̂ = α
R̂12

, respectively, where γ ’s are the Dirac matrices in 

the standard (Dirac) representation1 and α = 1/137.0359991 is 

1 The explicit form of the Dirac matrices is

γ0 =
(

1 0
0 −1

)
, γ =

(
0 σ

−σ 0

)
,
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the fine-structure constant [24]. The Fock operator F̂, Eq. (3), then 
takes the form of the Hamiltonian for a spin-1/2 particle moving 
in an external spherically symmetric field

F̂ = Ẑ + V̂e , V̂e =
N∑

b=1

〈b|2 α

R̂12
(1 −P12)|b〉2 , (6)

where P12 exchanges the coordinates of the electrons. Before pro-
ceeding further, it is advantageous to subtract the electron rest 
mass μ from the Fock operator (6) and one-particle energies Ea

and express them in the dimensionless atomic units;

R = r

μZα
, P = μZαp . (7)

The Fock operator (6) and Hartree-Fock equations (2) then read

f̂ = F̂ − μ

μ(Zα)2
= ẑ + 1

Z
v̂ , (8)

ẑ = 1

Zα
γ0γ · p̂ + γ0 − 1

(Zα)2
− 1

r
, (9)

v̂ =
N∑

b=1

〈b|2 1

r̂12
(1 −P12)|b〉2 (10)

and

f̂|a〉 = εa|a〉 , εa = Ea − μ

μ(Zα)2
, (11)

respectively.

2.2. Integrals of motion and PT -symmetric operator

As is well-known, see e.g. [8], there are three operators com-
muting with the Dirac Hamiltonian for a particle in a spherically 
symmetric field: the square, Ĵ2, and the third component, Ĵz , of 
the total angular momentum given by the sum of orbital and spin 
angular momentum,

Ĵ = L̂ + 1

2
� ,

and the relativistic parity operator K̂,

K̂ = γ0

(
� · L̂ + 1

)
. (12)

As noted in [18], in the case of a purely Coulomb field, V e = 0
in Eq. (6), another integral of motion appears for the second-order 
Dirac Hamiltonian. Every solution of the first-order Dirac equation 
(2), (Ea − F̂)|a〉 = 0, can be written in the form

〈r| a〉 = [γ0(Ea − F̂) + 2μ]φa(r) .

Multiplying the whole expression by γ0 from the left, we obtain 
the second-order Dirac equation,

Ĥφa(r) = 0 , Ĥ = γ0(Ea − F̂)[γ0(Ea − F̂) + 2μ] , (13)

where in the case of pure Coulomb potential, the second-order 
Dirac Hamiltonian Ĥ is given by

where σi are 2-by-2 Pauli matrices and 1 and 0 are 2-by-2 identity and zero matri-
ces, respectively. The fifth Dirac matrix, γ5, which is needed later, see Eq. (94), has 
the explicit form

γ5 =
(

0 1
1 0

)
.

3

Ĥ = E2
a − μ2 − 2(μZα)2

[
p̂2

r

2
− Ĝ(Ĝ − 1)

2r̂2
− Ea/μ

r̂

]
, (14)

where p̂r is radial momentum, in coordinate representation p̂r =
−i 

(
d
dr + 1

r

)
. The operator Ĝ is the additional integral of motion 

for pure Coulomb potential

Ĝ = γ0

(
K̂ + i(Zα)γ · n

)
, (15)

where n = (sin ϑ cosϕ, sinϑ sinϕ, cosϑ) is the unit vector point-
ing in an arbitrary direction. The form (14) is up to the additive 
constant E2

a − μ2 and up to the multiple of −2(μZα)2 the same 
as the non-relativistic Hamiltonian with Ĝ(Ĝ − 1) playing the role 
of the square of angular momentum L̂2.

Simple calculation shows that

K̂2 = Ĵ2 + 1

4
, Ĝ2 = K̂2 − (Zα)2 .

Whence the eigenvalues of the operators K̂ and Ĝ read

K = κ |K | , κ = ±1 , |K | = j + 1/2 (16)

and

G = gκ |G| , g = ±1 , |G| =
√

K 2 − (Zα)2 , (17)

respectively. Note that the sign of G is defined relative to the sign 
of K . In addition, it is worth noting that the operator Ĝ is not 
Hermitian, but PT -symmetric [17]

Ĝ† = γ0Ĝγ0 , (18)

where † stands for Hermitian conjugation and γ0 plays the role of 
the P (parity) operator.

All the operators Ĝ, K̂, ̂J2 and Ĵz commute one with another; 
whence they possess common eigenfunctions

Ĝ|g, κ, j,m〉 = gκ |G||g, κ, j,m〉 ,

K̂|g, κ, j,m〉 = κ |K ||g, κ, j,m〉 (19)

and

Ĵ2|g, κ, j,m〉 = j( j + 1)|g, κ, j,m〉 ,

Ĵz|g, κ, j,m〉 = m|g, κ, j,m〉.
Their explicit from reads

〈n| g, κ, j,m〉 =
(

cg
1〈n| j,m〉κ

cg
2〈n| j,m〉−κ

)
, (20)

where the symbol 〈n| j, m〉κ denotes the spherical spinors

〈n| j,m〉κ

=
1
2∑

Sz=− 1
2

(
j − κ

2
,m − Sz,

1

2
, Sz| j,m

)
Y j− κ

2 ,m−Sz
(n)

∣∣∣∣1

2
, Sz

〉
.

(21)

Here Yl,m(n), 
∣∣ 1

2 , Sz
〉

and (|) are spherical harmonics, spin functions 
and Clebsch-Gordan coefficients, respectively, see any textbook on 
quantum mechanics, e.g. [19]. It follows from Eqs. (12), (15) and 
(19) that the coefficients c in the expansion (20) satisfy

cg
2 = − i

Zα
(K − G)cg

1 . (22)

If this is supplemented with the normalization requirement
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〈g, κ, j,m|g, κ, j,m〉 = |cg
1 |2 + |cg

2 |2 = 1 , (23)

the coefficients c are determined uniquely up to an overall phase. 
The explicit form of the coefficients c complying with Eqs. (22)
and (23) is most easily obtained by introducing the angle θ by the 
relation

Zα = |K | sin θ ; (24)

then, cf. Eq. (17),

|G| = |K | cos θ , (25)

and, cf. Eqs. (20) and (22),

〈n| +, κ, j,m〉 =
(

cos θ
2 〈n| j,m〉κ

−iκ sin θ
2 〈n| j,m〉−κ

)
(26)

and

〈n| −, κ, j,m〉 =
(

sin θ
2 〈n| j,m〉κ

−iκ cos θ
2 〈n| j,m〉−κ

)
. (27)

2.3. Hydrogenic solution

To motivate our choice of the expansion of the eigenfuctions of 
the Fock operator (8), see Eqs. (36) and (38) below, we first show 
here the hydrogenic solution in the basis (26), (27). As it is clear 
from Eq. (14), the spinor-angular and radial degrees of freedom 
can be separated in the case of pure Coulomb potential

φa(r) = RnA ,lg (ξA, r)〈n| g, κA, j A,m〉 . (28)

From Eqs. (14), (19) and the last equation we obtain equation for 
the radial hydrogenic functions[

p̂2
r

2
+ lg(lg + 1)

2r2
− Ea/μ

r

]
RnA ,lg (ξA, r)

= E2
a − μ2

2(μZα)2
RnA ,lg (ξA, r) ,

(29)

where the effective angular quantum number lg is determined 
from equation

lg(lg + 1) = G(G − 1) . (30)

Requiring lg > −1 so that the radial functions are normalizable, 
we obtain lg = |G| − 1 for G > 0 and lg = |G| for G < 0. In view of 
Eq. (19) this can be written concisely as

lg = |G| − δg,κA . (31)

Substitution r → r/ξA , where

ξA = Ea

μnA
, (32)

converts Eq. (29) into equation for Sturmian functions (see e.g. [16,
19,20])

1

2

[
rp̂2

r + l(l + 1)

r
+ r

]
Rn,l(r) = nRn,l(r) ,

n = k + l + 1 , k = 0,1,2, . . . ,

(33)

where in the case considered clearly l = lg , n = nA and

Ea = μ√
1 +

(
Zα
nA

)2
. (34)
4

The screened Sturmian functions appearing in Eq. (29), which will 
be extensively used further in the paper, are related to the func-
tions (33) by the relation

Rn,l(ξ, r) = ξ Rn,l(ξr) , (35)

where the multiplicative factor ξ ensures that the screened func-
tions have the same normalization, see Eq. (B.3) below, as the 
functions (33).

2.4. Form of the spin-orbitals

The Fock operator (8) mixes states (28) with different signs of g
and different principal quantum numbers n. Thus, a general eigen-
state of the Fock operator (8) can be searched for in the form

〈r| a〉 = 〈r| nA, κA, j A,m〉
= 〈r| nA, |G| − δκA ,+

〉〈n| +, κA, j A,m〉
+ 〈r| nA, |G| − δκA ,−

〉〈n| −, κA, j A,m〉 ,

(36)

where, |G| = √
( j A + 1/2)2 − (Zα)2, cf. Eqs. (16) and (17). Further-

more, the bispinors 〈n| g, κA, j A,m〉 are given by Eqs. (26), (27)
and the radial parts of the orbitals are expanded into the Sturmian 
functions (33), (35)

〈r| nA, |G| − 1〉 =
N∑

k=0

c+
A,k Rk,|G|−1(ξA, r) ,

〈r| nA, |G|〉 =
N−1∑
k=0

c−
A,k Rk,|G|(ξA, r) .

(37)

In terms of notation in Eq. (36) this can be written concisely as

〈r| nA, |G| − δκA ,g
〉 = N−δκA ,−g∑

k=0

c
δκA ,g−δκA ,−g

A,k Rk,|G|−δκA ,g (38)

Henceforth we change the notation to

Rn=k+l+1,l(ξ, r) → Rk,l(ξ, r) ; (39)

we designate the Sturmian functions by their number of nodes k
that are natural numbers (including zero) and not by their princi-
pal quantum number n = l +1 +k, which is irrational, see Eqs. (17)
and (31). We found this change of designation useful when de-
riving and programming the difference equations for the integrals 
from the Sturmian functions discussed further. Further, the screen-
ing constant in Eq. (38) is set to

ξA = 1

nA
(40)

where nA is the non-relativistic principle quantum number of the 
pertinent shell. We found that taking the value (32) does not make 
any notable difference on the result, see also discussion in Sec-
tion 9.

2.5. Roothaan form of DHF equations

Substituting now expansions (36) and (38) into the DHF equa-
tion (11) and projecting this equation onto the considered basis 
vectors, we obtain the Roothaan form of the DHF equations [25]

∑
k

(
f ++

ik f +−
ik

f −+
ik f −−

ik

)(
c
δκA ,+−δκA ,−
A,k

c
δκA ,−−δκA ,+
A,k

)

= εa

∑(
S++

ik S+−
ik

S−+
ik S−−

ik

)(
c
δκA ,+−δκA ,−
A,k

c
δκA ,−−δκA ,+

)
,

(41)
k A,k
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where

f g,g
ik = zg,g

ik + 1

Z
v g,g

ik . (42)

The operators ẑ and v̂ are given by Eqs. (9) and (10), respectively. 
The pertinent matrix elements are defined below in Eqs. (43), (44)
and (53). Their calculation is described in the next three sections.

3. One-particle matrix elements

The matrix elements of one-particle operator ẑ and overlap ma-
trix are defined as,

zg,g
ik =

∞∫
0

drr2 Ri,lg (ξ, r)〈g, κ, j,m|ẑ∣∣g, κ, j,m
〉
Rk,lg

(ξ, r) (43)

and

S g,g
ik = 〈g, κ, j,m| g, κ, j,m

〉 ∞∫
0

drr2 Ri,lg (ξ, r)Rk,lg
(ξ, r) , (44)

respectively. Recall that lg = |G| − δg,κA , see Eq. (31).
First we rewrite the kinetic term in the one-particle opera-

tor (9) successively as

1

Zα
γ0γ · p̂ = − i

Zα
γ0γ · n

(
∂

∂r
− � · L̂

r

)

= − i

Zα
γ0γ · n

(
∂

∂r
+ 1

r
− Ĝ − i Zαγ0γ · n

r

)

= − i

Zα
γ0γ · n

(
∂

∂r
− Ĝ − 1

r

)
+ 1

r

= − Ĝ − γ0K̂

(Zα)2

(
∂

∂r
− Ĝ − 1

r

)
+ 1

r
,

(45)

where Eqs. (12) and (15) were used in the second and fourth 
equalities. The spinor-angular part of the one-particle operator (9)
can thus be written solely in terms of the operators Ĝ, K̂ and γ0

ẑ = − Ĝ − γ0K̂

(Zα)2

(
∂

∂r
− Ĝ − 1

r

)
+ γ0 − 1

(Zα)2
. (46)

The integration of the spinor-angular degrees of freedom in 
Eqs. (43) and (44) is then reduced to the simple calculation

〈g, κ, j,m|γ0|g, κ, j,m〉 = g cos θ ,

〈−g, κ, j,m|γ0|g, κ, j,m〉 = 0 ,

〈g, κ, j,m| g, κ, j,m〉 = 1 , 〈−g, κ, j,m| g, κ, j,m〉 = sin θ

and

〈g, κ, j,m|(Ĝ − γ0K̂)|g, κ, j,m〉 = 0 ,

〈−g, κ, j,m|(Ĝ − γ0K̂)|g, κ, j,m〉 = G sin θ ,

following from Eqs. (19)–(27). Substituting these results and 
Eq. (46) into Eq. (43) we get

〈g, κ, j,m|ẑ|g, κ, j,m〉 = g cos θ − 1

(Zα)2
(47)

and

〈−g, κ, j,m|ẑ|g, κ, j,m〉 = − sin θ

2

[
1 + G

(
d − G − 1

)]
.

(Zα) dr r

5

(48)

To calculate the action of the last operator on the Sturmian func-
tions, we recall that in [16] a number of recursive relations for 
Sturmian functions was derived; in particular, relations connecting 
functions with the same principal quantum number n and different 
orbital quantum number l: (note that here we temporarily label 
the Sturmian functions according to their principal quantum num-
ber n to make the point clear):(

d

dr
+ l + 1

r

)
Rn,l(ξ, r)

= ξ

l

[
nRn,l(ξ, r) +

√
n2 − l2 Rn,l−1(ξ, r)

] (49)

and(
d

dr
− l

r

)
Rn,l(ξ, r)

= − ξ

l + 1

[
nRn,l(ξ, r) +

√
n2 − (l + 1)2 Rn,l+1(ξ, r)

]
,

(50)

see Eqs. (33) and (34) in [16] where the substitution r → rξ is 
made. Note that there is a missing minus sign on the rhs of Eq. 
(34) in the cited paper.

The last two equations can be united into the single equation(
d

dr
− G − 1

r

)
Rn,|G|−δg,κ (ξ, r)

= − ξ

G

[
nRn,|G|−δg,κ (ξ, r) +

√
n2 − G2 Rn,|G|−δ−g,κ (ξ, r)

]
.

(51)

Recalling that G = gκ |G|, see Eq. (17), Eqs. (49) and (50) then 
correspond to the cases g = κ , |G| = l + 1 and g = −κ , |G| = l
respectively. Thus, by means of Eq. (51) the calculation of the 
matrix elements (43) is completely reduced to calculation of the 
overlap integrals (44). Calculation of these integrals is outlined in 
Section 5.4.

4. Spinor-angular part of the two-electron interaction

To separate the angular and radial degrees of freedom in the 
matrix elements of the operator v̂, Eq. (10), we expand r−1

12 in the 
multipole expansion

r−1
12 = 1

r>

∞∑
l=0

(
r<

r>

)l 4π

2l + 1

l∑
m=−l

Yl,m(n1)Y ∗
l,m(n2) (52)

where r< = r1, r> = r2 if r1 < r2 and r< = r2, r> = r1 if r1 > r2. 
Recall that Yl,m(n) stands for spherical harmonics.

The matrix elements of v̂ in Eq. (42) are given as

v g,g
ik =

∑
{nB , jB ,κB }

∑
p,g′

∑
q,g′

c
δκB ,g′−δκB ,−g′
B,p c

δκB ,g′−δκB ,−g′
B,q

∞∑
l=0

AC ( j A, κA, g, g, jB , κB , g′, g′, l)

×R({i, lg, ξA}, {p, lg′ , ξB}, {k, lg, ξA}, {q, lg′ , ξB}, l)

−AE( j A, κA, g, g, jB , κB , g′, g′, l)

×R(i, lg, ξA}, {p, lg′ , ξB}, {q, lg′ , ξB}, {k, lg, ξA}, l)

(53)

where the spinor-angular part of the Coulomb and exchange inte-
grals reads
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AC ( j A, κA, g, g, jB , κB , g′, g′, l)

= 4π

2l + 1

l∑
m=−l

jB∑
mB=− jB

〈g, κA, j A,mA |Yl,m(n̂)
∣∣g, κA, j A,mA

〉
× 〈

g′, κB , jB ,mB
∣∣Y ∗

l,m(n̂)
∣∣g′, κB , jB ,mB

〉
,

(54)

and

AE( j A, κA, g, g, jB , κB , g′, g′, l)

= 4π

2l + 1

l∑
m=−l

jB∑
mB=− jB

〈g, κA, j A,mA |Yl,m(n̂)
∣∣g′, κB , jB ,mB

〉
× 〈

g′, κB , jB ,mB
∣∣Y ∗

l,m(n̂)
∣∣g, κA, j A,mA

〉
,

(55)

respectively and radial part of the integrals, R, is defined below, 
Eq. (58). Clearly, the calculation of these matrix elements involves 
calculation of the matrix elements of spherical harmonics between 
the bispinors (20)

〈g, κA, j A,mA |Yl,m(n̂)
∣∣g′, κB , jB ,mB

〉
= (cg

1)∗cg′
1 〈 j A,mA |κA Yl,m(n̂)| jB ,mB〉κB

+ (cg
2)∗cg′

2 〈 j A,mA |−κA Yl,m(n̂)| jB ,mB〉−κB .

(56)

Using further the definition of spherical spinors (21), the orthonor-
mality of the spin vectors and the Wigner-Eckart theorem for an-
gular integration, we obtain for the matrix elements of spherical 
harmonics between spherical spinors

〈 j A,mA |κA Yl,m(n̂)| jB ,mB〉κB

= δm,mA−mB

(
j A − κA

2
,0, jB − κB

2
,0|l,0

)

×
√

(2 j A + 1 − κA)(2 jB + 1 − κB)

(2l + 1)4π

×
1
2∑

Sz=− 1
2

(
j A − κA

2
,mA − Sz,

1

2
, Sz| j A,mA

)

×
(

jB − κB

2
,mB − Sz,

1

2
, Sz| jB ,mB

)
(−1)2mA−mB−Sz

×
(

j A − κA

2
,−mA + Sz, jB − κB

2
,mB − Sz|l,−m

)
.

(57)

It follows from the selection rules for Clebsch-Gordan coefficients 
that the rhs of the last equation vanishes unless | j A − jB −
κA−κB

2 | ≤ l ≤ j A + jB − κA+κB
2 and l + j A − jB − κA+κB

2 is an even 
number. For the second term on the rhs of Eq. (56) we obtain the 
same rules simply by replacing κA,B by −κA,B . Whence, the in-
finite sum over multipoles l in Eq. (53) collapses to only a few 
terms.

The last equation is substituted into the next to the last equa-
tion, Eq. (56). This equation is then substituted into Eqs. (54) and 
(55). The resulting sums can be performed either elegantly by 
means of a high level angular momentum theory, see e.g. [26,27], 
or by brute force computer computation. The net result is that AC

vanishes unless l = 0.

5. Radial part of the two-electron interaction

The radial part of the integration in Eq. (53) involves calculation 
of the integrals
6

R({i, l1, ξ1}, {p, l2, ξ2}, {k, l3, ξ3}, {q, l4, ξ4}, l)

=
∞∫

0

dr1 Ri,l1(ξ1, r1)Rk,l3(ξ3, r1)r
l+2
1

×
∞∫

r1

dr2 R p,l2(ξ2, r2)Rq,l4(ξ4, r2)r
−l+1
2

+
∞∫

0

dr1 Ri,l1(ξ1, r1)Rk,l3(ξ3, r1)r
−l+1
1

×
r1∫

0

dr2 R p,l2(ξ2, r2)Rq,l4(ξ4, r2)r
l+2
2 .

(58)

5.1. Linearization of the product of two functions

Following [16] we first write the product of radial functions of 
the same variable as a linear combination of radial functions, Eq. 
(49) of [16],

r p Rk1,l1(ξ1, r)Rk2,l2(ξ2, r)

=
k1+k2+p∑

k=0

(k1, l1, ξ1,k2, l2, ξ2|k)p Rk,l1+l2(ξ1 + ξ2, r) .
(59)

For the coefficients of the linear combination the following differ-
ence equation holds, see Eq. (53) of [16],

(k1, l1, ξ1,k2, l2, ξ2|k)p

√
k1(k1 + 2l1 + 1)

= 2

(
k1 + l1 − ξ1(k + l1 + l2 + 1)

ξ1 + ξ2

)
× (k1 − 1, l1, ξ1,k2, l2, ξ2|k)p

− √
(k1 + 2l1)(k1 − 1)(k1 − 2, l1, ξ1,k2, l2, ξ2|k)p

+ ξ1

ξ1 + ξ2

√
(k + 2(l1 + l2) + 1)k(k1 − 1, l1, ξ1,k2, l2,

ξ2|k − 1)p + ξ1

ξ1 + ξ2

√
(k + 1)(k + 2(l1 + l2) + 2)

× (k1 − 1, l1, ξ1,k2, l2, ξ2|k + 1)p .

(60)

It turns out that this equation becomes numerically unstable for 
large numbers of nodes (of the order of forty) when k2 > k1. Thus, 
in order to achieve high numerical stability this equation is used 
for k1 ≥ k2. For k2 > k1 we use the same equation, but with the
roles of 1 and 2 swapped:

(k1, l1, ξ1,k2, l2, ξ2|k)p

√
k2(k2 + 2l2 + 1)

= 2

(
k2 + l2 − ξ2(k + l1 + l2 + 1)

ξ1 + ξ2

)
× (k1, l1, ξ1,k2 − 1, l2, ξ2|k)p

− √
(k2 + 2l2)(k2 − 1)(k1, l1, ξ1,k2 − 2, l2, ξ2|k)p

+ ξ2

ξ1 + ξ2

√
(k + 2(l1 + l2) + 1)k

× (k1, l1, ξ1,k2 − 1, l2, ξ2|k − 1)p

+ ξ2

ξ1 + ξ2

√
(k + 1)(k + 2(l1 + l2) + 2)

× (k1, l1, ξ1,k2 − 1, l2, ξ2|k + 1)p .

(61)

For the case of interest, p = 1, the equation (60) is solved with the 
initial conditions, see Eqs. (56)–(58) in [16],
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(0, l1, ξ1,0, l2, ξ2|0)1

= 2(l1 + l2 + 1)
ξ

l1+1
1 ξ

l2+1
2

(ξ1 + ξ2)l1+l2+2

√
(2l1 + 2l2 + 1)!

(2l1 + 1)!(2l2 + 1)! ,
(62)

(0, l1, ξ1,0, l2, ξ2|1)1

= −
√

2(l1 + l2 + 1)
ξ

l1+1
1 ξ

l2+1
2

(ξ1 + ξ2)l1+l2+2

√
(2l1 + 2l2 + 1)!

(2l1 + 1)!(2l2 + 1)!
(63)

and

(k1, l1, ξ1,k2, l2, ξ2|k)1 = 0 , k > k1 + k2 + 1 , k < 0 . (64)

Using Eq. (59) for p = 1, the integrals (58) can be written as

R({i, l1, ξ1}, {p, l2, ξ2}, {k, l3, ξ3}, {q, l4, ξ4}, l)

=
∑
u,v

(i, l1, ξ1,k, l3, ξ3|u)1(p, l2, ξ2,q, l4, ξ4|v)1

×
[

Pl1+l3,l2+l4,l
u,v (ξ1 + ξ3, ξ2 + ξ4) + Pl2+l4,l1+l3,l

v,u (ξ2 + ξ4, ξ1 + ξ3)
]

×
√

u!
(u + 2 (l1 + l3) + 1)!

√
v!

(v + 2 (l2 + l4) + 1)! ,

(65)

where

P L1,L2,l
k1,k2

(ξ1, ξ2)

=
∞∫

0

R̃k1,L1(ξ1r1)r
l+1
1

∞∫
r1

R̃k2,L2(ξ2r2)r
−l
2 dr2 dr1

(66)

and

P L2,L1,l
k2,k1

(ξ2, ξ1)

=
∞∫

0

R̃k1,L1(ξ1r1)r
−l
1

r1∫
0

R̃k2,L2(ξ2r2)r
l+1
2 dr2 dr1 .

(67)

The unnormalized radial functions R̃k,l(r) are related to the nor-
malized functions Rk,l(r) via relation

R̃k,l(r) =
√

(k + 2l + 1)!
k! Rk,l(r). (68)

By using the unnormalized functions, the irrational factors are con-
veniently eliminated.

5.2. Difference equations for the integrals P L1,L2,l
k1,k2

(ξ1, ξ2)

For the integrals (66) a number of difference equations was de-
rived in [16]. In particular, the following relations that lower the 
number of nodes of the radial functions k2 and k1, while other 
quantum numbers are fixed, hold, see Eqs. (67) and (72) of [16],

(k2 + 1)P L1,L2,l
k1,k2+1(ξ1, ξ2) − 2lP L1,L2,l

k1,k2
(ξ1, ξ2)

− (k2 + 2L2 + 1)P L1,L2,l
k1,k2−1(ξ1, ξ2)

= −2(k1, L1, ξ1|r|k2, L2, ξ2)

(69)

and

(k1 + 1)P L1,L2,l
k1+1,k2

(ξ1, ξ2) + 2(l + 1)P L1,L2,l
k1,k2

(ξ1, ξ2)

− (k1 + 2L1 + 1)P L1,L2,l
(ξ1, ξ2) = 2(k1, L1, ξ1|r|k2, L2, ξ2) ,

(70)

k1−1,k2

7

respectively. Here, the one-particle radial integrals on the rhs of 
these equations are defined as

(k1, L1, ξ1|r|k2, L2, ξ2) =
∞∫

0

r2 R̃k1,L1(ξ1, r)R̃k2,L2(ξ2, r)dr. (71)

Relations (69) and (70) reduce the integrals (66) to the integrals 
over nodeless functions P L1,L2,l

0,0 (ξ1, ξ2). These integrals can be in 
turn expressed for general non-integer values of orbital quantum 
numbers L1 and L2 in terms of the hypergeometric function as

P L1,L2,l
0,0 (ξ1, ξ2) = 2L1+L2+2ξ

L1+1
1 ξ

−L1−2
2 �(L1 + L2 + 3)

l + L1 + 2

× F

(
L1 + l + 2, L1 + L2 + 3, L1 + l + 3,−ξ1

ξ2

)
.

(72)

The method for calculation of this particular type of the hypergeo-
metric function is given in Appendix A.

In the case when the difference of the orbital quantum num-
bers L2 − L1 is an integer, and only if there is such a case, it is 
advantageous to lower the orbital quantum number L2 to the value 
L1 or L1 to L2 by means of the relations, see Eqs. (75) or (81) in 
[16],

− 2lP L1,L2+1,l
k1,k2−1 (ξ1, ξ2) − 2(L2 + 1)P L1,L2+1,l

k1,k2
(ξ1, ξ2)

+ 2(L2 + 1 − l)(k2 + 2L2 + 2)P L1,L2,l
k1,k2

(ξ1, ξ2)

= −2(L2 + 1)

ξ2
[(k1, L1, ξ1|k2, L2 + 1, ξ2)

−(k1, L1, ξ1|k2 − 1, L2 + 1, ξ2)] ,

(73)

and

− 2(L1 + 1)P L1+1,L2,l
k1,k2

(ξ1, ξ2) + 2(l + 1)P L1+1,L2,l
k1−1,k2

(ξ1, ξ2)

+ 2(L1 + l + 2)(k1 + 2L1 + 2)P L1,L2,l
k1,k2

(ξ1, ξ2)

= 2(L1 + 1)

ξ1

[
(k1, L1 + 1, ξ1|k2, L2, ξ2)

− (k1 − 1, L1 + 1, ξ1|k2, L2, ξ2)
]
,

(74)

respectively. The one-particle integrals on the rhs of the last two 
equations are defined as, cf. Eq. (71),

(k1, L1, ξ1|k2, L2, ξ2) =
∞∫

0

r R̃k1,L1(ξ1, r)R̃k2,L2(ξ2, r)dr. (75)

In contrast to the non-relativistic case, it can happen here that 
spinor-angular integration does not enforce that both L1 and L2
have to be greater than the order l of the multipole expansion. 
In such a case, it is still advantageous to use Eq. (73) if L2 > L1. 
However, in the case when L1 > L2, it is not advantageous to de-
crease further the value of L1 by means of Eq. (74), but instead to 
increase the value of L2 by means of Eq. (73).

5.3. Asymptotic solution of difference equations

As follows from Eqs. (53) and (65), when we calculate the ex-
change integrals we always calculate the integrals (66) for the case 
ξ1 = ξ2 and |L1 − L2| = 0, 1, 2. As already observed in [28] in the 
non-relativistic setting, in such a case the calculation of the in-
tegrals (66) through the direct use of difference equations (69)
and (70) does not yield numerically stable results for the inte-
grals involving a large number of nodes k1, k2. In [16] and [28]
numerically stable ways of calculation of the integrals (66) were 
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suggested. However, both these procedures work only in the non-
relativistic setting. Here we come yet with another solution that 
works also in the relativistic case. It can be used in the non-
relativistic case, too, cf. [22].

In the case when |L1 − L2| = 1, 2, we use Eqs. (73) and (74) in 
the way just described. We thus always reduce the calculation of 
the exchange integrals to the calculation of integrals (66), where 
ξ1 = ξ2 and L1 = L2. In such a case the one-particle integrals on 
the rhs of Eqs. (69) and (70) are zero for |k2 −k1| > 1, see Eqs. (82)
and (88) below. Thus, for k2 
= k1 it suffices to solve homogeneous 
equations (69) and (70).

Both linearly independent solutions of homogeneous Eqs. (69)
and (70) can be obtained as a solution of the equation

(k + 1)[ak+1,p,L − ak−1,p,L] − 2Lak−1,p,L + 2pak,p,L = 0 . (76)

The two linearly independent solutions of homogeneous Eq. (69)
are obtained by setting P L1,L2,l

k1,k2
(ξ1, ξ2) = ak2,−l,L2 and P L1,L2,l

k1,k2
(ξ1, ξ2)

= (−1)k2 ak2,l,L2 . Likewise, the two linearly independent solutions 
of homogeneous Eq. (70) are obtained by setting P L1,L2,l

k1,k2
(ξ1, ξ2) =

ak1,l+1,L1 and P L1,L2,l
k1,k2

(ξ1, ξ2) = (−1)k1 ak1,−l−1,L1 .
Following the general method outlined in [29], we search for an 

asymptotic solution of Eq. (76) in the form

ak,p,L =
Q∑

q=0

Aq
�(k)

�(k + q − L + p)
. (77)

In actual calculation we take Q � 25. Substituting this into Eq. (76)
we obtain after some algebraic manipulation recursive relation for 
coefficients Aq

Aq+1(−2)(q + 1) + Aq(q − L + p)(3q − 3 − 3L + p)

− Aq−1(q − L + p)(q − L + p − 1)(q − L + p − 2) = 0 .
(78)

One starts this recurrence with q = 0 setting A−1 = 0; A0 is an 
overall multiplicative constant undetermined from these relations, 
but all Aq/A0 for q > 0 are determined uniquely. We set A0 = 1
and determine overall multiplicative constant as described below.

For |k1 − k2| > 0 general solution of Eqs. (69) and (70) for the 
case L1 = L2 = L and ξ1 = ξ2 = ξ can be written in the form

P L,L,l
k1,k2

(ξ, ξ) = [c1,1ak1,l+1,L + c1,2ak1,−l−1(−1)k1 ]ak2,−l,L

+ [c2,1ak1,l+1,L + c2,2ak1,−l−1,L(−1)k1 ]ak2,l,L(−1)k2 ,

|k1 − k2| > 0 , k1,2 ≥ k0 ,

(79)

where k0 � 10 is the smallest number for which the asymptotic 
solution (77) holds to desired accuracy; further,

P L,L,l
k1,k2

(ξ, ξ) = c1,1ak1,l+1 + c1,2ak1,−l−1(−1)k1 k1 ≥ k0 > k2

(80)

and

P L,L,l
k1,k2

(ξ, ξ) = c1,1ak2,−l + c2,1ak2,l(−1)k2 k2 ≥ k0 > k1 . (81)

The coefficients c are fitted to the actual values of the integrals 
obtained by running equations (69) and (70) up to k1,2 � 10. As 
already observed in [28] in the non-relativistic setting, additional 
simplifications appear; they must be taken into account for a nu-
merically stable determination of coefficients c in Eqs. (79)–(81).

1. If k2 > k1 ≥ k0 then c1,1 = c1,2 = 0 and c2,2 = 2
ξ

; the coefficient 
c2,1 is obtained by fitting (79) on the value P L,L,l

(ξ, ξ).
k0,k0+1
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2. If k1 > k2 ≥ k0 and l > 0 then c1,2 = c2,2 = 0; the coeffi-
cients c1,1 and c2,1 are obtained by fitting (79) on the values 
P L,L,l

k0+1,k0
(ξ, ξ) and P L,L,l

k0+2,k0+1(ξ, ξ).
3. If k1 > k2 ≥ k0, l = 0 and k2 mod 2 = 0 then c1,2 = c2,2 = 0

and c2,1 = c1,1; the coefficient c1,1 is obtained by fitting (79)
on the value P L,L,0

k0+1,k0
(ξ, ξ).

4. If k1 > k2, l = 0 and k2 mod 2 = 1 then P L,L,0
k1,k2

(ξ, ξ) = 0.
5. If k1 ≥ k0 > k2 then c1,2 = 0; the coefficient c1,1 is obtained by 

fitting (80) on the value P L,L,l
k0,k2

(ξ, ξ).
6. If k2 ≥ k0 > k1 then c1,1 = 0; the coefficient c2,1 is obtained by 

fitting (81) on the value P L,L,l
k1,k0

(ξ, ξ).

As mentioned in Section 4, the spinor-angular integration re-
duces the calculation of the Coulomb integrals to the case l = 0
only. If ξ1 = ξ2 and L1 = L2, the integrals (66) are calculated as 
described above. If this is not the case, the integrals (66) can be 
calculated directly, in a numerically stable way, from the relations 
(69) and (70). The difficult part is then the calculation of the one-
particle integrals on the rhs of these equations, to which we turn 
next.

5.4. One-particle integrals

Calculation of the overlap integrals (71), appearing in Eqs. (43), 
(69) and (70), is by means of relation, see Eq. (78) of [16],

2ξ2(k1, L1, ξ1|r p|k2, L2, ξ2)

= 2(k2 + L2 + 1)(k1, L1, ξ1|r p−1|k2, L2, ξ2)

− (k2 + 1)(k1, L1, ξ1|r p−1|k2 + 1, L2, ξ2)

− (k2 + 2L2 + 1)(k1, L1, ξ1|r p−1|k2 − 1, L2, ξ2)

(82)

reduced to the calculation of the overlap integrals (75). To calculate 
these integrals we have to again distinguish whether the difference 
L1 − L2 is an integer or not.

If the difference L1 − L2 is not an integer, integrals (75) are 
calculated by means of the difference equations, see Eq. (B7) of 
[16],

(k2 + 1)

(
1

ξ1
+ 1

ξ2

)
(k1, L1, ξ1|k2 + 1, L2, ξ2)

= 2

(
−k1 + L1 + 1

ξ1
+ k2 + L2 + 1

ξ2

)
(k1, L1, ξ1|k2, L2, ξ2

+ (k2 + 2L2 + 1)

(
1

ξ1
− 1

ξ2

)
(k1, L1, ξ1|k2 − 1, L2, ξ2)

+ 2
k1 + 2L1 + 1

ξ1
(k1 − 1, L1, ξ1|k2, L2, ξ2) .

(83)

This equation is used when ξ1 ≥ ξ2 and k1 ≤ k2 + s. The number 
s was determined on basis of numerical experiments as follows. If 
L1 > L2 then s = min

{
10

(
2
ξ2

− 2
ξ1

− 1
)

,23
}

; if L2 ≥ L1 and ξ1 < 2

then s = 18 
(

1
ξ2

− 1
ξ1

)
; for ξ1 = 2 s = 5 

(
2
ξ2

− 2
ξ1

+ 3
)

. If k2 reaches 
zero, we swap the roles of 1 and 2 in Eq. (83):

(k1 + 1)

(
1

ξ1
+ 1

ξ2

)
(k1 + 1, L1, ξ1|k2 + 1, L2, ξ2)

= 2

(
k1 + L1 + 1

ξ1
− k2 + L2 + 1

ξ2

)
(k1, L1, ξ1|k2, L2, ξ2)

+ (k1 + 2L1 + 1)

(
− 1

ξ1
+ 1

ξ2

)
(k1 − 1, L1, ξ1|k2, L2, ξ2)

+ 2
k2 + 2L2 + 1

(k1, L1, ξ1|k2 − 1, L2, ξ2) .

(84)
ξ2
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If both k1 and k2 are zero then

(0, l1, ξ1|0, l2, ξ2) = (2ξ1)
L1+1(2ξ2)

L2+1 �(L1 + L2 + 2)

(ξ1 + ξ2)L1+L2+2
. (85)

If ξ1 ≥ ξ2 and k1 > k2 + s, we use Eq. (84) unless k1 ≤ k2 + s; then 
we use Eq. (83). If ξ1 < ξ2, we use an obvious relation

(k1, L1, ξ1|k2, L2, ξ2) = (k2, L2, ξ2|k1, L1, ξ1) . (86)

If the difference L2 − L1 is an integer, then if L2 > L1 we use 
Eq. (B10) of [16]

2(k1 + L1 + L2 + 2)(k1, L1, ξ1|k2, L2, ξ2)

= 2(k1 + 2L1 + 1)(k1 − 1, L1, ξ1|k2, L2, ξ2) −
(

1 − ξ1

ξ2

)
× (k1, L1, ξ1|k2 − 2, L2 + 1, ξ2)

− 2
ξ1

ξ2
(k1, L1, ξ1|k2 − 1, L2 + 1, ξ2) +

(
1 + ξ1

ξ2

)
× (k1, L1, ξ1|k2, L2 + 1, ξ2) .

(87)

If L1 > L2 we use first Eq. (86) to swap the roles of 1 and 2 and 
then use Eq. (87). If L1 = L2 then we proceed as follows. If ξ1 = ξ2

then, see Eqs. (68) and (B.3) below,

(k1, L, ξ |k2, L, ξ) = δk1,k2

(k1 + 2L + 1)!
k1! ; (88)

otherwise we use the relation derived in Appendix B

2

[(
ξ2

ξ1
+ ξ1

ξ2

)
(k2 + L + 1) − 2(k1 + L + 1)

]
(k1, L, ξ1|k2, L, ξ2)

+
(

ξ2

ξ1
− ξ1

ξ2

)
[(k2 + 2L + 1)(k1, L, ξ1|k2 − 1, L, ξ2)

+(k2 + 1)(k1, L, ξ1|k2 + 1, L, ξ2)] = 0

(89)

to lower k2 to zero. In such a case we use Eq. (B3) of [16]

(k1 + 1, L, ξ1|0, L, ξ2) = k1 + 2L1 + 2

k1 + 1

ξ2 − ξ1

ξ2 + ξ1
(k1, L, ξ1|0, L, ξ2) .

(90)

6. Open-shell atoms with one valence electron in the 
Frozen-Core approximation

In the previous Sections we outlined the restricted DHF method 
for closed-shell atoms. These results can be directly used for the 
open-shell atoms with one valence electron. The one-particle va-
lence electron hamiltonian is taken in the form of the Fock oper-
ator, Eq. (8), where the field of Z − 1 core electrons is given by 
Eq. (10) obtained by solving restricted DHF equations for pertinent 
closed-shell cation, for instance for Cs+ . This, so called frozen core 
approximation, is advantageous for later consideration of electron 
correlation, see e.g. [3].

6.1. PNC amplitude in Cs

The PNC amplitude between 6s and 7s states in Cs is given in 
the one-particle approximation as [2–6]

EPNC = 〈7s|
[

ĤPNC
1

Ĥat − E7s
D̂z + D̂z

1

Ĥat − E6s
ĤPNC

]
|6s〉 , (91)

where Ĥat is the one-particle valence electron hamiltonian,

Ĥat − En′s = μ(Zα)2(f̂ − εn′s) , (92)
9

where f̂ is the Fock operator (8), D̂z is the third component of the 
electric dipole operator

D̂z = e

μZα
rn3 , (93)

where e is the elementary electric charge and ĤPNC is the parity 
non-conserving electroweak interaction operator

ĤPNC = Gβ√
8

Q W ρ(R)γ5 = μ(Zα)3 μ2Gβ√
8

Q W ρ(r)γ5 , (94)

where Gβ is the Fermi constant for beta decay,

μ2Gβ �
(

μ

μp

)2

10−5 � (0.5446)210−11 . (95)

Here μ/μp is the ratio of electron and proton masses [24]. Further, 
Q W is weak charge of the nucleus

Q W = Z(1 − 4 sin2 θW ) − N , (96)

where Z and N are nucleus charge and number of neutrons, re-
spectively and θW is the weak mixing angle; for the case consid-
ered

Z = 55 , N = 78 . (97)

Furthermore, γ5 is the fifth Dirac matrix in the standard represen-
tation and ρ(R) is nucleus charge density (neglecting neutron skin 
effect) normalized in such a way that∫

d3r ρ(r) = 1 . (98)

For simplicity we assume the nuclear charge distribution to be that 
of homogeneous spherical shell

ρ(r) = C�(rN − r) , C = 3

4πr3
N

, (99)

where � is the Heaviside function and the constant C was deter-
mined from Eq. (98). The charge radius of 133Cs nucleus is [30]
rN = 4.804 fm. The corresponding value in atomic units is

rN = 4.804
0.511

1.973
10−2 Zα � 0.500 × 10−2 . (100)

Substituting these equations into Eq. (91) we obtain

EPNC = i
e

μα

(
− Q W

N

)
10−11EPNC , (101)

where

EPNC = i
(0.5446)2

√
8

Nα
∑

n

〈7s|

×
{

ργ5
∣∣np1/2

〉〈
np1/2

∣∣rn3

εnp1/2 − ε7s
+ rn3

∣∣np1/2
〉〈

np1/2
∣∣ργ5

εnp1/2 − ε6s

}
|6s〉 .

(102)

For the Fock operator, Eq. (8), an important identity

[r̂, f̂] = i

Zα
γ0γ (103)

holds. By means of this identity Eq. (102) can be written in the 
alternative form
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EPNC = (0.5446)2

√
8

N

Z

×
∑

n

〈7s|[ργ5
∣∣np1/2

〉〈
np1/2

∣∣γ0γ3−γ0γ3
∣∣np1/2

〉〈
np1/2

∣∣ργ5
]|6s〉

(ε7s−εnp1/2 )(ε6s−εnp1/2 )
.

(104)

The atomic states in Eqs. (102) and (104) are given by Eqs. (36)
and (38)

〈r| n′s
〉 = N∑

k=0

c+
n′s,k Rk,|G|−1(ξn′s, r)〈n| +,+,

1

2
,

1

2

〉

+
N−1∑
k=0

c−
n′s,k Rk,|G|(ξn′s, r)〈n| −,+,

1

2
,

1

2

〉 (105)

and

〈r| np1/2
〉 = N∑

k=0

c+
np1/2,k Rk,|G|−1(ξp1/2 , r)〈n| −,−,

1

2
,

1

2

〉

+
N−1∑
k=0

c−
np1/2,k Rk,|G|(ξp1/2 , r)〈n| +,−,

1

2
,

1

2

〉
.

(106)

6.2. Spinor-angular matrix elements

It follows from Eqs. (26) and (27) that

〈±, κ, j,m|
(

0 Ô

Ô 0

)
|±,−κ, j,m〉

= iκ
sin θ

2

[
< Ô >κ + < Ô >−κ

] (107)

and

〈+, κ, j,m|
(

0 Ô

Ô 0

)
|−,−κ, j,m〉

= iκ

[
cos2 θ

2
< Ô >κ + sin2 θ

2
< Ô >−κ

]
,

(108)

where

< Ô >κ= 〈 j,m|κ Ô| j,m〉κ . (109)

Here Ô is either identity matrix or σ3, the third Pauli spin matrix. 
The spin operator Ŝ = σ /2 is the so(3) vector operator, see e.g. 
[19], thus

〈 j,m|κ Ŝ3| j,m〉κ = 〈 j,m|κ Ŝ · Ĵ | j,m〉κ
j( j + 1)

m

= κ (2 j + 1) + 1

4 j( j + 1)
m ,

(110)

where in the second equality we took advantage of the fact that

〈 j,m|κ Ŝ · Ĵ | j,m〉κ = 1

2
〈 j,m|κ (Ĵ2 − L̂2 + Ŝ2)| j,m〉κ

= 1

2

[
j( j + 1) −

(
j − κ

2

)(
j + 1 − κ

2

)
+ 3

4

]
.

It follows from Eqs. (107)-(110) that for the case of interest〈
±, κ,

1

2
,

1

2

∣∣∣∣γ5

∣∣∣∣±,−κ,
1

2
,

1

2

〉
= iκ sin θ = iκ Zα , (111)〈

+, κ,
1

2
,

1

2

∣∣∣∣γ5

∣∣∣∣−,−κ,
1

2
,

1

2

〉
= iκ , (112)〈

±, κ,
1
,

1
∣∣∣∣γ0γ3

∣∣∣∣±,−κ,
1
,

1
〉
= iκ

sin θ = iκ
Zα

(113)

2 2 2 2 3 3

10
and〈
+, κ,

1

2
,

1

2

∣∣∣∣γ0γ3

∣∣∣∣−,−κ,
1

2
,

1

2

〉
= iκ

1 + 2κ cos θ

3
(114)

In the second equalities in Eqs. (111), (113) we used Eq. (24).
The only non-zero matrix elements of the third component of 

the unit vector n are

〈g,−κ, j,m|n3|g, κ, j,m〉 = g cos θ〈 j,m|−κn3| j,m〉κ . (115)

Since n is the so(3) vector operator

〈 j,m|−κn3| j,m〉κ = 〈 j,m|−κn · Ĵ | j,m〉κ
j( j + 1)

m = − m

2 j( j + 1)
,

(116)

so for the case considered〈
g,−κ,

1

2
,

1

2

∣∣∣∣n3

∣∣∣∣g, κ,
1

2
,

1

2

〉
= − g cos θ

3
. (117)

6.3. Electroweak matrix elements

The evaluation of the matrix elements 
〈
n′s

∣∣ρ(r)γ5
∣∣np1/2

〉
is 

simplified by the fact that the charge distribution ρ(r) is non-
vanishing only in the vicinity of the origin, see Eq. (99). Therefore, 
inside the integral the Sturmian functions can be replaced by their 
expansion at the origin:

Rk,l(ξ, r) = (2ξ)l+1

�(2l + 2)

√
�(k + 2l + 2)

�(k + 1)
rl exp(−ξr)

× F (−k,2l + 2,2ξr)

= (2ξ)l+1

�(2l + 2)

√
�(k + 2l + 2)

�(k + 1)
rl

×
∞∑

q=0

(−ξr)q

q! F (−q,−k,2l + 2,2) .

(118)

It then follows from Eqs. (99), (105), (106), (111), (112) and the 
last equation〈
n′s

∣∣ρ(r)γ5
∣∣np1/2

〉
= iC

∑
i,k

[
c+

n′,ic
+
n,k W |G|−1,|G|−1

i,k + Zαc+
n′,ic

−
n,k W |G|−1,|G|

i,k

+Zαc−
n′,ic

+
n,k W |G|,|G|−1

i,k + c−
n′,ic

−
n,k W |G|,|G|

i,k

]
,

|G| =
√

1 − (Zα)2 ,

(119)

where

W l1,l2
i,k =

rN∫
0

drr2 Ri,l1(ξ1r)Rk,l2(ξ2r)

=
√

�(i + 2l1 + 2)

�(i + 1)

√
�(k + 2l2 + 2)

�(k + 1)

(2ξ1)
l1+1

�(2l1 + 2)

(2ξ2)
l2+1

�(2l2 + 2)

×
∞∑

p=0

r3+l1+l2+p
N

3 + l1 + l2 + p

p∑
q=0

(−ξ1)
q(−ξ2)

p−q

q!(p − q)!
× F (−q,−i,2l1 + 2,2)F (−p + q,−k,2l2 + 2,2) .

Because of the small value of rN , Eq. (100), very few terms in the 
infinite sum over p need to be considered to get a result with 
working precision.
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6.4. Dipole matrix elements

It follows from Eqs. (71), (105), (106), (113), (114) and (117)
that〈
n′s

∣∣γ0γ3
∣∣np1/2

〉 = i

3

∑
i,k[

(1 + 2 cos θ)c+
n′,ic

+
n,k(i, |G| − 1, ξn′s|r|k, |G| − 1, ξp1/2)

+ Zαc+
n′,ic

−
n,k(i, |G| − 1, ξn′s|r|k, |G|, ξp1/2)

+ Zαc−
n′,ic

+
n,k(i, |G|, ξn′s|r|k, |G| − 1, ξp1/2)

+(1 − 2 cos θ)c−
n′,ic

−
n,k(i, |G|, ξn′s|r|k, |G|, ξp1/2)

]
(120)

and〈
n′s

∣∣rn3
∣∣np1/2

〉 = −cos θ

3

∑
i,k[

c+
n′,ic

+
n,k(i, |G| − 1, ξn′s|r2|k, |G| − 1, ξp1/2)

−c−
n′,ic

−
n,k(i, |G|, ξn′s|r2|k, |G|, ξp1/2)

]
.

(121)

The calculation of the radial integrals in the last equation can be 
by means of Eq. (82) converted to the calculation of integrals (71).

6.5. Hyperfine integrals

The accuracy of the wave function close to the nucleus is usu-
ally assessed by calculation of the hyperfine structure splitting. 
This in turn depends on the radial integral [14]

IM1 = 2

∞∫
0

drRU
n (r)R L

n(r) , (122)

where RU
n (r) and R L

n(r) are upper and lower radial components of 
the atomic wave function (36)

〈r| n, κ, j,m〉 =
(

RU
n (r)〈n| j,m〉κ

R L
n(r)〈n| j,m〉−κ

)
, (123)

where 〈n| j, m〉κ are spherical spinors defined in Eq. (21). The per-
tinent radial integral can be, again, by means of Eq. (82), this time 
used in the other way, reduced to the known integral (75).

7. Computational details

The described analytic restricted DHF method was implemented 
in Fortran using LAPACK, the standard linear algebra package.

The most difficult part is the calculation of the radial integrals, 
Eq. (58). The problem is that there are 2 · 24 · ν2 (ν is the num-
ber of shells) sets of integrals to be calculated (the factor 2 is due 
to Coulomb and exchange interaction, the factor 24 is due expan-
sion of the spin-orbitals into two bispinors, see Eq. (36)) and that 
each set consists of N4 elements (N stands for the number of ba-
sis functions considered for each orbital, cf. Eq. (38)). Specifically, 
the slowest step is a fourfold loop in the radial functions (i.e. i, 
k, p, q in Eq. (58)) together with two loops due to the lineariza-
tion of the product of two functions, see Eq. (59). Computational 
time required for calculation of the coefficients in Eq. (59) as well 
as of the radial functions (65) and (66) via the described method 
is negligible. Unfortunately, the sixfold loop cannot be avoided in 
principle.

Nevertheless, much time and memory can be spared by con-
sidering the symmetries of the problem. First of all, since elec-
trons are, in principle, indistinguishable, it suffices to consider 
11
integrals between shells a and b with b ≥ a. Second, the factor 
24 = 16 contains only 10 different sets of integrals (and even less 
if a = b).

Further, a suitable choice of the basis can reduce the computa-
tional cost. First, we observed the dependence of the results on the 
number of functions considered, i.e. for how many functions the 
results become basis-size-independent. We found that in the case 
of closed-shell atoms, the number of basis functions for each ra-
dial orbital, cf. Eq. (38), is best given by the formula N A = 10kA +q
where kA is the number of nodes of the pertinent shell. q is a pa-
rameter set to q = 10 . . . 40 to obtain basis-size independence, cf. 
Table B.1. This choice yields results of the same precision as if the 
inner orbitals were expanded into the same number of functions 
as the outermost ones.

Second, we could set the screening constants to

ξA = 1

nA

(
1 − σA

Z

)
, (124)

where nA is the non-relativistic principal quantum of the pertinent 
shell, Z is the nuclear charge and σA is number of electrons “suffi-
ciently below” the chosen shell A [32], instead of using ξA = 1/nA , 
Eq. (40). However, while this alternative choice of the screening 
constants significantly improves the results in the case of neutral 
atoms for smaller bases and/or heavier atoms, the difference dis-
appears once we require stabilization to ten or more significant 
digits. Note that the initial oscillations during the SCF cycles are 
more damped with this alternative choice of ξ .

Finally, running time can be saved by using the OpenMP. In our 
tests, we found, though, that only the calculation of matrix ele-
ments of the two-electron interaction, see Eq. (58), (prior to the 
SCF procedure), and then the calculation of the mean potential due 
to the two-electron interaction, see the summation in Eq. (53), in 
each SCF cycle is worth parallelizing. These two parts are paral-
lelized by pairs of shells (or by shells in the case of the latter), e.g. 
one CPU calculates all matrix elements between two shells a and 
b.

We choose hydrogenic orbitals as our initial estimates of orbital 
coefficients. Alternatively, we could use results for lighter atoms or 
smaller bases; however, this did not prove to significantly improve 
the convergence.

Note that the subtraction of the electron rest mass, see 
Eqs. (8)–(11), is crucial in order to avoid unnecessary loss of pre-
cision. As the rest mass is much larger than the binding energies, 
three to four digits would be lost otherwise due to subtraction of 
close numbers.

Finally, we would like to mention that the only element in 
the whole implementation of DHF method calculated in quadruple 
precision arithmetic is the evaluation of hypergeometric function 
in Eq. (72), described in Appendix A, as double precision arith-
metics did not yield sufficiently accurate results for some values. 
The needed �-function for evaluation of the hypergeometric func-
tion, see Appendix A, is evaluated in quadruple precision using the 
code developed in [33]. The rest of the calculation runs in double 
precision arithmetic.

8. On the use of the PASC program

This section should give the reader a brief idea about the PASC 
program and its structure, specifically what kinds of inputs are re-
quired and what outputs are to be expected. See the README file 
for detailed instructions on the compilation and use of the pro-
gram as well as two example calculations.

The PASC program (Fortran 2008 compliant) can calculate 
closed-shell DHF atomic systems and open-shell systems with one 
valence electron in the frozen-core approximation for all systems 
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up to xenon- (54 electrons) and cesium- (55 electrons) like sys-
tems. In addition, summation rules, electric dipoles, fine-structure 
splittings, and PNC amplitude can be calculated. The program can 
be easily modified, using the present subroutines, to calculate 
also polarizabilities (scalar, vector, Stark), as well as other related 
quantities. Also, inclusion of heavier systems is easily achieved by 
specifying the additional shells.

The desired calculation is specified via an input file (see the 
README file for a list of all possible parameters). The program 
prints out the input (system specifications), progress (e.g. con-
vergence of the SCF procedure), as well as final results directly 
in the terminal. Orbital energies and coefficients (and screening 
constants, cf. Eqs. (29) and (35)) are saved as textfiles and, once 
calculated, can be loaded for subsequent calculations of desired 
quantities such as electric dipoles etc. Note that the program may 
be easily modified to print out more or less information as well as 
save also other results, if desired.

9. Results and discussion

Numerical stability of the integrals

The precision of the described methods for calculation of ma-
trix elements is illustrated in Table B.2 for two-particle integrals, 
Eq. (58), where the most challenging part turned out to be the 
calculation of one-particle overlap integrals, see Sec. 5.4. The rel-
ative error of the two-particle matrix elements lies generally in 
the interval 10−9 − 10−14. The numerical stability of the proposed 
method depends on the screening constants and on the orbital 
quantum numbers as follows. The best results are obtained when 
the screening constants are all the same, or when they do not sig-
nificantly differ. The case when they differ and one pair of them 
equals 1 usually yields the worst results. Similarly, if the orbital 
quantum numbers l are equal or at least sums of pairs of ls are 
equal (due to the linearization in Eq. (59)), the method works bet-
ter than in the cases when they all differ (i.e. for example a matrix 
element between three positive and one negative energy states).

Restricted DHF for closed-shell atoms

We used the proposed methods of calculation of matrix ele-
ments to obtain DHF energies of various systems. First, all closed 
shell atoms up to xenon were calculated and the obtained results 
are in an excellent agreement with those published previously [9], 
see Table B.1 where we list energies for noble gas atoms (for point 
nuclei). Notice that the results are basis-size-independent and sta-
bilized to ten significant digits. Notice also that our results lie even 
slightly below the values obtained using numerical integration [9]
and that our method is not limited to systems with 20 relativistic 
shells the most, as is the case of [9], see [34].

Frozen core approximation for Cs

In contrast to the calculation performed in [4,5,14] we consid-
ered non-zero size of the nucleus only for the calculation of PNC 
amplitude, Eqs. (102) and (104). The Sturmian basis set has all 
the advantages listed in the Introduction, notably it is a complete 
set on an infinite interval and it has only one artificial parame-
ter, the number N of the considered basis function in Eq. (38). To 
ascertain the basis (in)dependence of the results, we used N in 
Eq. (38) up to 150. Also, we studied the dependence of the results 
on the screening constant ξn′s and ξp1/2 in Eqs. (105) and (106), 
respectively. We found that the best stabilization of the energies is 
obtained for ξp1/2 � 1/19. For s-states we varied ξn′s from 1/6 to 
1/19 and found small dependence of the resulting energies as N
12
in Eq. (38) is sufficiently increased. Good stabilization is achieved 
for ξ6s � 1/9 and ξ7s � 1/15.

As it is seen from Table B.3 the agreement between our cal-
culation and those reported in the literature for the ground and 
excited energies of Cs is very good. The effect of the finite size of 
the nucleus is found to be negligibly small. In Tables B.4, B.5 and 
B.6 the calculation of the electric dipole moments, hyperfine inte-
grals and PNC amplitude is compared to those previously reported 
in literature [4,5,14]. We observed the following dependence of the 
results on the basis set. To get the stabilization of the ground and 
low lying excited states energies of Cs to 8 significant digits, it suf-
fices to consider N = 100 in Eq. (38). With this basis set one gets 
stabilization of electric dipole moments to 5 digits (of course the 
stabilization goes down with increasing the excitation of p-states), 
of hyperfine integrals to 4 digits and PNC amplitude to 3 digits. We 
increased the basis set up to N = 150 in Eq. (38) to make sure the 
results are basis independent. We observed that relatively little is 
gained by increasing the basis set beyond N = 100 while perform-
ing the calculations in double precision arithmetics. In particular, 
we found impossible to stabilize the energies to more than 10 sig-
nificant digits when there are only 16 digits at one’s disposal.

The energies and electric dipole moments depend on the be-
havior of the wave functions on the atomic scale; the effect of the 
finite size of the nucleus is negligible for both quantities. As it is 
seen from Table B.4, our results for electric dipole moments signifi-
cantly differ from those previously reported. This difference cannot 
be ascribed to the difference in nucleus size. We have shown that 
the results obtained from our Sturmian based method can be eas-
ily converged in the number of the basis functions used yielding 
stable and basis-independent results. This is not so easy to estab-
lish for methods based on non-uniform finite difference [4,5,14]. 
We conclude that the previous results for electric dipole moments 
and PNC amplitude are strongly basis dependent.

10. Conclusions

The main contribution of this paper is the development of a 
numerically stable algorithm for relativistic atomic structure calcu-
lations in the Sturmian basis set defined by Eqs. (33) and (35).

Despite the high suitability of the Sturmian basis set for atomic 
calculations, its use has been hindered by the numerical instabil-
ity present in the calculation of matrix elements of the Hamilton 
operator. The herein proposed method allows us to obtain these 
matrix elements with relative error 10−9 − 10−15, and thus opens 
the possibility of a wider use of the Sturmian basis set in pre-
cise atomic structure calculations. As already mentioned in the 
introductory section, the use of Sturmian basis set is advantageous 
for instance, when dealing with highly excited states, autoioniz-
ing states and when summation over complete atomic basis set 
is involved, like in the calculation of atomic polarizabilities and 
so on. The limitations of the Sturmian basis set encountered in 
the self-energy problem [35] can be dealt with by the method de-
scribed in [36]. In brief, the Sturmian basis set is not suitable to 
describe the highly energetic states belonging to continuum part 
of the spectra. But these highly energetic states can be in the 
first approximation treated as free-particles states perturbed by 
Coulomb potential. One then uses the Sturmian basis set to de-
scribe difference between the states of the atomic Hamiltonian and 
free-particle Hamiltonian perturbed by Coulomb potential.

We illustrated the method on the calculation of the ground and 
excited energies, the electric dipole moments, hyperfine integrals 
and PNC amplitude of Cs in the frozen core approximation. Except 
for the energies, our results significantly differ from those previ-
ously reported.

Our next step is to implement the herein proposed algorithm in 
the coupled-cluster method [37] and its extensions [38] to properly 
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account for electron correlation. We already succeeded in compu-
tation of the atomic integrals needed in coupled-cluster method 
according to the herein proposed scheme. Currently we are work-
ing on adaptation of coupled-cluster method and its extension, 
equation-of-motion-coupled-cluster-method, to spherical symme-
try of the atoms. These further developments will be described 
elsewhere. The extension of herein proposed method from atomic 
to molecular integrals requires to express in the closed form the 
coefficients of the expansion of the functions (36) centered at an 
atom in terms of the functions (36) centered at another atom. This 
nontrivial issue will be addressed in future.
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Appendix A. Calculation of hypergeometric function

We need to evaluate the hypergeometric function F (a, b, a +
1, −|z|), where a = L1 + l + 2, b = L1 + L2 + 3 and |z| = ξ1

ξ2
, see 

Eq. (72). For |z| < 1 we can evaluate the hypergeometric function 
through the defining hypergeometric series

F (a,b, c, z) = 1 + ab

c
z + a(a + 1)b(b + 1)

c(c + 1)

z2

2! + . . . . (A.1)

For |z| > 1 we use the relation, see e.g. [31],

F (a,b, c, z)

= �(c)�(b − a)

�(b)�(c − a)
(1 − z)−a F

(
a, c − b,a + 1 − b,

1

1 − z

)

+ �(c)�(a − b)

�(a)�(c − b)
(1 − z)−b F

(
b, c − a,b + 1 − a,

1

1 − z

)
.

(A.2)

For the case considered the hypergeometric function in the first 
term reduces to F

(
a,a + 1 − b,a + 1 − b, 1

1−z

)
=

(
− z

1−z

)−a
. The 

hypergeometric function in the second term is then calculated via 
the series (A.1). For |z| <

√
5−1
2 we evaluate the needed hyperge-

ometric function F (a, b, a + 1, −|z|) via the series (A.1), otherwise 
we use the formula (A.2).

Appendix B. Derivation of difference equation for special 
one-particle integrals

Substituting r → rξ1 in Eq. (33) and multiplying this equation 
by ξ1, cf. Eq. (35), we obtain[

r

2ξ1

(
p̂2

r + L(L + 1)

r2

)
+ ξ1r

2

]
Rk1,L(ξ1, r)

= (k + L + 1)R (ξ , r) ,

(B.1)
1 k1,L 1

13
where k1 = 0, 1, 2, . . . Further, we substitute for the radial func-
tions the expansion

Rk1,L(ξ1, r) =
∞∑

k2=0

ck2 Rk2,L(ξ2, r) . (B.2)

Owing to the orthonormality relations following from the hermitic-
ity of the operator on the lhs of Eq. (B.1) with respect to the inner 
product with weight r, see [16,19,20] for a more detailed discus-
sion,

∞∫
0

drrRk1,L(r)Rk2,L(r) = δk1,k2 (B.3)

we get

ck2 =
∞∫

0

drrRk1,L(ξ1, r)Rk2,L(ξ2, r) . (B.4)

Furthermore, we can write, see Eqs. (27) and (28) of [16],

r

ξ2

(
p̂2

r + L(L + 1)

r2

)
= T̂ξ2

3 + T̂ξ2+ + ˆ
Tξ2−

2
,

ξ2r = T̂ξ2
3 − T̂ξ2+ + ˆ

Tξ2−
2

,

(B.5)

where, see Eqs. (26) and (30) of [16],

T̂ξ2
3 Rk,l(ξ2r) = (k + l + 1)Rk,l(ξ2r) (B.6)

and

T̂ξ2± Rk,l(ξ2r) = α±(k, l)Rk±1,l(ξ2r) ,

α+(k, l) =
√

(k + 2l + 2)(k + 1) ,

α−(k, l) = √
k(k + 2l + 1) .

(B.7)

By substituting Eq. (B.2) into Eq. (B.1) and using Eq. (B.5), we 
rewrite Eq. (B.1) into the form

∑
k2

[
ξ2

2ξ1

(
T̂ξ2

3 + T̂ξ2+ + T̂ξ2−
2

)

+ ξ1

2ξ2

(
T̂ξ2

3 − T̂ξ2+ + T̂ξ2−
2

)
− (k1 + L + 1)

]
ck2 Rk2,L(ξ2, r) = 0.

(B.8)

Using Eqs. (B.6) and (B.7) we further rewrite the last equation as

∑
k2

{[(
ξ2

ξ1
+ ξ1

ξ2

)
(k2 + L + 1) − (k1 + L + 1)

]
Rk2,L(ξ2, r)

+
[
α+(k2, L)

2
Rk2+1,L(ξ2, r) + α−(k2, L)

2
Rk2−1,L(ξ2, r)

]

×
(

ξ2

ξ1
− ξ1

ξ2

)}
ck2 = 0 .

(B.9)

Finally, using now the orthonormality relations (B.3) we get from 
the last equation a difference equation for the coefficients ck
2
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Table B.1
Total DHF energies (in atomic units) of noble gas atoms (with point nuclei). For each shell we consider 10n + q basis functions; n denotes the 
number of nodes of the shell and q is an integer parameter. The bottom line shows values obtained from the program GRASP2K [9]. Notice 
that our results lie slightly below those values.

q He Ne Ar Kr Xe

10 −2.8618135601 −128.6903260183 −528.6795435479 −2788.88069683 −7447.14851799
15 −2.8618133441 −128.6919589740 −528.6842614909 −2788.88452684 −7447.16037332
20 −2.8618133422 −128.6919693976 −528.6844431116 −2788.88481388 −7447.16237271
25 −2.8618133422 −128.6919694959 −528.6844502460 −2788.88483361 −7447.16267835
30 −2.8618133422 −128.6919694947 −528.6844504477 −2788.88483467 −7447.16272247
35 −2.8618133422 −128.6919694947 −528.6844504564 −2788.88483474 −7447.16272863
40 −2.8618133422 −128.6919694947 −528.6844504565 −2788.88483472 −7447.16272924
GRASP −2.8618133402 −128.6919693843 −528.6844498188 −2788.884831 −7447.16271867

Table B.2
Illustration of the accuracy of the method for calculation of the radial integrals, Eq. (58). R({i, p, k, q}, l) stands for R({i, l1, ξ1}, {p, l2, ξ2}, {k, l3, ξ3}, {q, l4, ξ4}, l). The listed 
integrals li are used in the calculation of xenon atom, see Table B.1 Note that the orbital quantum numbers l are not displayed here to all significant digits. The relative errors 
are errors of the computation in double precision relative to that in quadruple precision.

R({i, p,k,q}, l) rel. err.

1 2.96878481326560 · 101 0.13 · 10−14

2 −2.96828547437140 · 101 0.46 · 10−9

3 9.24214621921513 · 101 0.15 · 10−14

4 9.28341528143204 · 101 0.25 · 10−14

5 7.01043778797756 · 101 0.28 · 10−11

6 2.63170349316775 · 100 0.34 · 10−13

7 −1.12288474479141 · 10−2 0.19 · 10−11

8 3.34796422857836 · 100 0.26 · 10−13

9 −3.02772710163331 · 10−3 0.49 · 10−10

i l1 ξ1 p l2 ξ2 k l3 ξ3 q l4 ξ4 l

1 49 −0.08091 1 49 −0.08091 1 49 −0.08091 1 49 −0.08091 1 0
2 49 0.91909 1 49 −0.08091 1 49 −0.08091 1 49 −0.08091 1 0
3 49 1.97401 1/3 49 2.97401 1/3 49 1.97401 1/3 49 2.97401 1/3 0
4 49 1.97401 1/3 49 2.97401 1/3 49 2.97401 1/3 49 1.97401 1/3 0
5 49 1.96080 1/2 49 2.97401 1/3 49 0.96080 1/2 49 1.97401 1/3 0
6 49 1.96080 1/2 49 2.97401 1/3 49 1.97401 1/3 49 0.96080 1/2 1
7 49 1.96080 1/2 29 2.97401 1/3 39 0.96080 1/2 44 1.97401 1/3 0
8 49 1.96080 1/2 29 2.97401 1/3 44 1.97401 1/3 39 0.96080 1/2 1
9 49 −0.08091 1 29 2.97401 1/3 39 0.91909 1 44 1.97401 1/3 2

Table B.3
Excited one-particle energies of Cs in atomic units. For comparison with other results we use the same nomenclature as in 
[14]; FD stands for finite difference code; DKB for dual kinetic basis set code [15] and ND for Notre Dame code [11]. The 
reference [5] uses the basis set described in [14].

6s 7s 6p1/2 7p1/2 8p1/2

this work −0.1273734422(1) −0.0551888581(1) −0.085615749 −0.0420213429 −0.0251204371(1)

FD −0.127368 −0.05518735 −0.08561589
DKB −0.1273674 −0.05518714 −0.08561576
ND −0.1273682 −0.0551875 −0.08561616

[5] −0.127368 −0.0551863 −0.0856135 −0.042023

Table B.4
Reduced dipole matrix elements (n′s|D|np1/2) in atomic units; (n′s|D|np1/2) =
(n′s|z|np1/2)

√
2/(1/2, 1/2, 1, 0|1/2).

6p1/2 7p1/2 8p1/2

this work 6s 5.0367970 0.30564910 0.0956989
[5] 5.2777 0.3717
this work 7s 4.2458375 10.789637 0.857288
[5] 4.4131 11.009

Table B.5
Hyperfine integrals (122) in atomic units.

6s (×10−1) 7s (×10−2) 6p1/2 (×10−2)

this work 1.14301 3.1410 −1.25543
FD 1.114751 3.063077 −1.252026
DKB 1.114741 3.063069 −1.252018
ND 1.121812 3.084164 −1.218362

Table B.6
PNC amplitude (102), (104) in frozen core DHF 
approximation.

APNC

this work 0.8097
FD 0.74
DKB 0.7395
ND 0.8546

[(
ξ2

ξ1
+ ξ1

ξ2

)
(k2 + L + 1) − (k1 + L + 1)

]
ck2

+
(

ξ2

ξ1
− ξ1

ξ2

)[
α+(k2 − 1, L)ck2−1 + α−(k2 + 1, L)ck2+1

] = 0.

(B.10)

Eliminating now the normalization factors
14
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ck2 =
√

k2!
(k2 + 2L + 1)! c̃k2 , (B.11)

we have from Eqs. (68) and (B.4)

c̃k2 = (k1, L, ξ1|k2, L, ξ2) . (B.12)

The last three equations then yield Eq. (89).
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See also J. Zamastil, M. Šimánek, J. Čížek, L. Skála, J. Math. Phys. 46 (2005) 
033504.

[29] C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and 
Engineers, McGraw-Hill, New York, 1978.

[30] G. Fricke, et al., At. Data Nucl. Data Tables 60 (1995) 177.
[31] L.D. Landau, E.M. Lifschitz, Quantum Mechanics, Nonrelativistic Theory, Perga-

mon Press, Oxford, 1968.
[32] The meaning of “sufficiently below” is best explained on the example of ytter-

bium. For all s spin-orbitals, we set σns = 0 because s-electrons can penetrate 
to the nucleus. For p spin-orbitals (both p1/2 and p3/2) with the principal 
quantum number n, we set σnp equal to the number of electrons in s spin-
orbitals up, to ns; e.g. for, 2p spin-orbitals σ2p = 4. For d spin-orbitals, we 
set σnd equal to the number of electrons in s spin-orbitals up to ns and in p
spin-orbitals up, to (n − 1)p; e.g. for, 3d spin-orbitals σ3d = 12. Similarly, for f
spin-orbitals, we set σnf equal to the number of electrons in s spin-orbitals up 
to ns, in p spin-orbitals up to np and in d spin-orbitals up, to (n − 1)d; e.g. for 
4 f spin-orbitals σ4 f = 36.

[33] T. Fukushima, xgam: Fortran 90 test program package of “qgam”, “dgam”, and 
“sgam”, fast computation of Gamma function with quadruple, double, and 
single precision accuracy, respectively; https://doi .org /10 .13140 /RG .2 .2 .31747.
04640, 2019.

[34] We calculated the DHF energies of cations Yb2+ , Tl3+ , Pb4+ and Bi5+ . The 
details will be given elsewhere.

[35] S.E. Haywood, J.D. Morgan III, Phys. Rev. A 32 (1985) 3179.
[36] V. Patkóš, D. Šimsa, J. Zamastil, Phys. Rev. A 95 (2017) 012507.
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